Ascarza, E. (2018). Retention Futility: Targeting High-Risk Customers Might be Ineffective. Journal of Marketing Research, 55(1), 80–98.
Athey, S. (2017). Beyond prediction: Using big data for policy problems. Science, 355(6324), 483–485.
Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353–7360.
Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic Perspectives, 31(2), 3–32.
Athey, S., Keleher, N., & Spiess, J. (2020). Machine Learning Who to Nudge: Causal vs Predictive Targeting in a Field Experiment on Student Financial Aid Renewal.
Athey, S., Tibshirani, J., Wager, S., & others. (2019). Generalized random forests. Annals of Statistics, 47(2), 1148–1178.
Athey, S., & Wager, S. (2020). Policy learning with observational data. Econometrica.
Castleman, B. L., & Page, L. C. (2014). Working paper: Summer nudging: Can personalized text messages and peer mentor outreach increase college going among low-income high school graduates. EdPolicyWorks, University of Virgina, Charlottesville.
Chernozhukov, V., Demirer, M., Duflo, E., & Fernandez-Val, I. (2018). Generic machine learning inference on heterogenous treatment effects in randomized experiments. National Bureau of Economic Research.
Fishbane, A., & Fletcher, E. (2016). Nudging for success: Using behavioral science to improve the postsecondary student journey. New York City: ideas42.
Hadad, V., Hirshberg, D. A., Zhan, R., Wager, S., & Athey, S. (2019). Confidence intervals for policy evaluation in adaptive experiments. arXiv Preprint arXiv:1911.02768.
Hainmueller, J., Hopkins, D. J., & Yamamoto, T. (2014). Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices via Stated Preference Experiments. Political Analysis, 22(1), 1–30.
Howard, S. R., Ramdas, A., McAuliffe, J., & Sekhon, J. (2018). Uniform, nonparametric, non-asymptotic confidence sequences. arXiv Preprint arXiv:1810.08240.
Kasy, M., & Sautmann, A. (2019). Adaptive treatment assignment in experiments for policy choice.
Kosorok, M. R., & Moodie, E. E. M. (Eds.). (2015). Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine. Society for Industrial; Applied Mathematics.
Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10), 4156–4165.
Luedtke, A. R., & Van Der Laan, M. J. (2016). Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. Annals of Statistics, 44(2), 713.
Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.
Nie, X., & Wager, S. (2017). Quasi-oracle estimation of heterogeneous treatment effects. arXiv Preprint arXiv:1712.04912.
Nissan, R., Kenney, S., Lensing, S., Anderson, J., Richards, T.-A., Barrows, A., & Palmer, D. (2020). Student success toolkit.
Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on thompson sampling. Found. Trends Mach. Learn., 11(1), 1–96.
Sverdrup, E., Kanodia, A., Zhou, Z., Athey, S., & Wager, S. (2020). Policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source Software, 5(50), 2232.
Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4), 285–294.
Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3–28.
Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228–1242.
Zhou, Z., Athey, S., & Wager, S. (2018). Offline multi-action policy learning: Generalization and optimization. arXiv Preprint arXiv:1810.04778.